# LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034 

B.Sc. DEGREE EXAMINATION - PHYSICS

## SECOND SEMESTER - APRIL 2023

## 16/17/18UMT2ALO1 - MATHEMATICS FOR PHYSICS - II

Date: 15-05-2023
Time: 09:00 AM - 12:00 NOON

PART-A
Answer ALL questions
$10 \times 2=20$ marks

1. Evaluate $\int\left(4 x^{3}+3 x^{2}-2 x+5\right) d x$.
2. Find the value $\int_{0}^{\frac{\pi}{2}} \cos ^{6} x d x$.
3. State any two properties of gamma function.
4. Prove that $\beta(n, m)=\beta(m, n)$.
5. If $\alpha$ and $\beta$ are the real and distinct roots of differential equation, write the complementary function.
6. Write the criterion for to be exact $M d x+N d y=0$.
7. Evaluate $\int_{0}^{1} \int_{0}^{2} \int_{0}^{3} x y z d x d y d z$.
8. Evaluate $\int_{0}^{a} \int_{0}^{b} x y(x-y) d x d y$.
9. Find the directional derivative of $\emptyset=x^{2} y z+y^{2} z$ at $(1,-2,-1)$ in the direction of $2 \overrightarrow{\imath+} \vec{\jmath}-3 \vec{k}$.
10. Prove that $\nabla \cdot \vec{r}=0$.

## PART - B

Answer any FIVE questions
$5 \times 8=40$ marks
11. Evaluate $\int \frac{3 x+1}{(x-1)^{3}(x+3)} d x$.
12. Establish the reduction formula $I_{n}=\int \cos ^{n} x d x$.
13. Solve $I=\int_{0}^{\frac{\pi}{2}} l o g \sin x d x$.
14. Show that $\frac{2^{n} \Gamma\left(n+\frac{1}{2}\right)}{\sqrt{\pi}}=1.3 .5 \ldots(2 n-1)$.
15. Solve $\left(D^{2}-4 D+3\right) y=e^{-x} \sin x$.
16. Solve $\left(1-x^{2}\right) \frac{d y}{d x}+2 x y=x \sqrt{1-x^{2}}$.
17. Find divergence and curl of the vector $\left.F=x y z \vec{\imath}+3 x^{2} y \vec{\jmath}+\left(x z^{2}-y^{2} z\right) \vec{k}\right)$ at $(1,2,-1)$.
18. Evaluate $\iint_{S} F . \hat{n} d s$ where $\mathrm{F}=\mathrm{zi}+\mathrm{xj}-\mathrm{y}^{2} \mathrm{zk}$, and S is the surface of the cylinder $\mathrm{x}^{2}+\mathrm{y}^{2}=1$ included in the first octant between the planes $\mathrm{z}=0$ and $\mathrm{z}=2$.

## PART C

19. (a) Prove that $\int_{0}^{\frac{\pi}{2}} \log (1+\tan \theta) d \theta=\frac{\pi}{8} \log 2$.
(b) Solve $\left(3 D^{2}+D-14\right) y=13 e^{2 x}$.
20. (a) Derive the reduction formula $I_{n}=\int \sin ^{n} x d x$.
(b) Prove that $\beta(m, n)=\frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}$.
21. (a)By changing into polar co-ordinates evaluate the integral $\int_{0}^{2 a} \int_{0}^{\sqrt{2 a x-x^{2}}}\left(x^{2}+y^{2}\right) d x d y$.
(b) Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y$. $(10+10)$
22. (a) Evaluate $\int \frac{3 x+7}{2 x^{2}+3 x-2} d x$.
(b) Find by Green's theorem the value of $\int_{c}\left(x^{2} y d x+y d y\right)$ along the closed curve C formed by the curves $\mathrm{y}^{2}=\mathrm{x}$ and $\mathrm{y}=\mathrm{x}$ between $(0,0)$ and $(1,1)$.
